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Sentiment classification, the task of assigning a positive or negative label to a text segment, is a key com-

ponent of mainstream applications such as reputation monitoring, sentiment summarization, and item rec-

ommendation. Even though the performance of sentiment classification methods has steadily improved over

time, their ever-increasing complexity renders them comprehensible by only a shrinking minority of expert

practitioners. For all others, such highly complex methods are black-box predictors that are hard to tune and

even harder to justify to decision-makers. Motivated by these shortcomings, we introduce BigCounter: a new

algorithm for sentiment classification that substitutes algorithmic complexity with Big Data. Our algorithm

combines standard data structures with statistical testing to deliver accurate and interpretable predictions.

It is also parameter-free and suitable for use virtually “out of the box,” which makes it appealing for orga-

nizations wanting to leverage their troves of unstructured data without incurring the significant expense of

creating in-house teams of data scientists. Finally, BigCounter’s efficient and parallelizable design makes it

applicable to very large datasets. We apply our method on such datasets toward a study on the limits of

Big Data for sentiment classification. Our study finds that, after a certain point, predictive performance

tends to converge and additional data have little benefit. Our algorithmic design and findings provide the

foundations for future research on the data-over-computation paradigm for classification problems.

1. Introduction

The ability to automatically label the sentiment of a given text segment as positive, negative, or

neutral, is a fundamental component of mainstream applications such as reputation monitoring,1

sentiment summarization,2 review mining,3 recommender systems design,4 and modeling consumer

behavior.5 Relevant literature typically refers to this task as sentiment classification or sentiment

analysis.6,7
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The popularity of sentiment classification has motivated a significant body of work and has

led to the design of numerous algorithms.8,9 A study of the relevant literature in chronological

order reveals that these algorithms are becoming significantly more complex with time. Early work

primarily focused on simple lexicon-based approaches, which were then extended by incorporating

basic linguistic features.10,11 The next stage brought about the use of increasingly complex machine

learning algorithms that formulate sentiment classification as a supervised learning task.6,12 The

use of Natural Language Processing (NLP) techniques for feature engineering further improved

the results of this approach, while also increasing its complexity.13,14 Today, the state-of-the-

art tries to unlock the power of deep learning: a branch of machine learning based on modeling

abstract relationships in unstructured text via multi-layer graphical models, such as artificial neural

networks15 and advanced language constructs, such as word embeddings.16

Even though new techniques are consistently pushing the performance boundaries in sentiment

classification, their ever-increasing complexity has multiple drawbacks that we address in our work:

• Interpretability: Complex machine learning methods typically have very limited inter-

pretability: even though we can prove that they perform well by testing them on new data, their

non-linear nature makes their outcomes hard to explain to decision makers.17

• Parameter Tuning: Complex algorithms are notoriously hard to tune, as the vast number

of parameters prohibits manual tuning and requires exhaustive or “intelligent”—but still compu-

tationally expensive—methods for automatic tuning.18,19

• Specificity: Existing methods are designed for classifying entire documents. As a result, their

accuracy suffers when they have to classify smaller segments, such sentences or phrases, that bear

very little evidence in terms of vocabulary or context.

• Infrastructure Cost: Algorithmic complexity translates to steep rises in computational costs,

as well as in software and hardware costs.20–22

• Recruitment Cost: Firms willing to accept the high infrastructure costs must inevitably also

invest in top quality talent that is able to build, manage, and utilize this infrastructure. In practice,



:
3

Table 1 Sentences of easy, medium, and high difficulty for sentiment classification

Easy Medium Hard

The food was great. We will stay longer next time. Minutes to downtown.

Best experience of my life. The location cannot be beat. They have shuttles if needed.

The most boring game ever. Hats off to the chef. I was told the food would take 5 min.

We loved the food. The place has an eclectic feel. This was our fourth stay here.

The soup was yummy. Million buck view. They leave little chocolates on your pillow.

Easily accessible and very clean. They go above and beyond. Parking was extra.

Very reasonable prices. It’s full of cockroaches. They gave us extra time to check out.

This place is a hidden treasure. The food is not worth the wait. I called reception twice, no response.

The rooms were clean and sunny. Parking is not very conveinant. We asked for a different room.

The view was definitely a bonus. Did not live up to standards. Jet planes also landing nearby.

however, limited funds and steep competition in the talent market have turned the acquisition of

technical talent into a challenging endeavor, especially for small and medium-sized firms.23–26

The negative consequences of the increasingly complex algorithms for sentiment classification

motivate us to consider a different approach. Table 1 presents a set of sentences that are easy,

medium, and hard to classify as positive or negative. Even a simple, lexicon-based approach that

counts the number of known positive or negative words in each sentence (e.g. amazing, horrible),

and reports the label with the majority count, would perform satisfactorily for the examples in

the easy group. However, this approach would not work for the examples in the medium group,

as they do not include such obvious leads. Instead, these sentences express their true sentiment

via (i) words that are unlikely to be found in standard lexicons (e.g. cockroach, eclectic, meh, the

misspelled word conveinant), (ii) expressions that consist of words that carry no sentiment on their

own (e.g. idioms such as above and beyond, hats off ), and (iii) expressions that change the sentiment

of known opinion words (e.g. not worth). A supervised approach could address occurrences of

type (i) provided that the training corpus includes enough occurrences of these atypical words to

affect the prediction. This is more likely to happen if the the corpus includes documents from the

same domain (e.g. the word cockroach is more likely to appear in restaurant reviews than in book
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reviews). On the other hand, given that standard supervised approaches ignore the order of the

words (i.e. the bag-of-words approach), they would fail to address types (i) and (ii). To address

such cases, the practitioner would have to engineer advanced features (e.g. entities, n-grams, noun

phrases) that can potentially capture at least some of these occurrences.

Finally, the hard group includes a set of a very challenging examples. In addition to lacking

both typical and rare opinion words, these examples do not include obviously positive or negative

expressions. Instead, the polarity of these sentences is highly context-dependent. For instance, the

sentence This was our fourth stay here, which we extracted from a hotel review, informs us that

the reviewer has repeatedly visited the hotel in the past. Given that a customer is highly unlikely

to return four times to a business that she is not pleased with, we intuitively expect this sentence

to carry positive sentiment. Another example is the phrase Minutes to downtown, which reveals

the hotel’s close proximity to a specific location. The fact that a city’s downtown area is typically

a popular destination (especially for hotel guests), implies a positive sentiment. At a glance, the

sentence Jet planes also landing nearby does not carry any sentiment. However, its negative polarity

becomes apparent if we consider that it comes from a hotel review. Specifically, the noise that

inevitably comes with the hotel’s proximity to an airport is clearly undesirable for the hotel’s

guests. One could argue that proximity to the airport enhances the hotel’s accessibility and could

motivate positive comments. However, such a comment would be unlikely to include the terms jet

planes and landing. Instead, we would expect a positive proximity comment to be similar to the

one that we discussed previously (e.g. Minutes to the airport).

The dependency of the polarity of these examples on context-specific information makes them

particularly challenging to address. Standard lexicon-based or supervised methods are unlikely to

be effective, even if they are extended via the use of advanced feature engineering. Further, the

state-of-the-art in deep learning has only recently started to explore textual representations that

take context into account.27,28 Even though the initial findings of such efforts are very promising

in terms of performance,29,30 they also introduce yet another layer of complexity, and demand
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familiarity with advanced concepts such as artificial neural networks and word embeddings.16,31

These obstacles limit the (informed) use of such methods to the minority of practitioners and firms

that possess the necessary experience, infrastructure, and skills. In addition, the complexity of such

methods essentially eliminates the interpretability of their results, especially for non-experts.

The examples in Table 1 verify that more challenging sentences require more complex algorithms.

As we get closer to simulating the way in which humans process and generate natural language con-

structs, it is reasonable to expect that our algorithmic machinery will get larger and more complex.

What if we could take a radically different, purely agnostic approach that is seemingly oblivious

to the context or thought process behind a statement? Let us again consider the phrase Minutes

to downtown. Suppose that we have a random sample of 5 English hotel reviews that include the

phrase Minutes to downtown. Out of these 5 reviews, 4 are positive and 1 is negative. This small

sample provides some evidence that the phrase is positive. However, some of the occurrences of

this phrase may be random and have little to do with the review’s overall rating. Our confidence

is thus limited due to the small size of the sample. If, for instance, our sample consisted of 9700

positive and 300 negative reviews, then our confidence would be much higher. Similarly, if our

sample consisted of 5050 positive and 4950 negative reviews, a safer prediction would be that the

statement is neutral. What if we had a sample of 100,000 or even a sample of 1 million reviews?

Previous work has explored the value of Big Data for predictive tasks.32–34 Intuitively, we expect

convergence to a confident prediction to occur after a certain sample size.

In this work, we apply this simple count-based paradigm to design the BigCounter algorithm

for sentiment classification. Given a very large corpus that includes both positive and negative

documents of arbitrary length (e.g. customer reviews), BigCounter predicts the sentiment of a

given short text sequence s, such as a sentence or phrase, by using a simple statistical test to

compare the positive and negative counts of s in the corpus. In order to account for the fact

that some sequences might not occur frequently enough to allow for a confident test, we extend

BigCounter to count the frequency of flexible wildcard patterns extracted from s. The algorithm

delivers an accuracy that competes and often surpasses the state-of-the-art.



6

The simple design of the BigCounter algorithm provide it with the following advantages:

1. It adopts a simple algorithmic approach based on standard data structures and statistical

testing, leading to minimal software requirements and a very lightweight implementation.

2. It is parameter-free and suitable for use virtually “out of the box,” which makes it appeal-

ing for organizations wanting to leverage their troves of unstructured data without incurring the

significant expense of creating in-house teams of data scientists.

3. It produces easily interpretable predictions that can be traced back to actual examples from

the input dataset.

4. It can accurately classify sentences, even if it is trained on data labeled just at the document

level. Our comparisons with two benchmark algorithms demonstrate its advantage on real datasets.

5. It is naturally parallelizable and thus scalable to very large datasets.

Our methodology has implications for practitioners in both academia and industry, as it offers

a simple and effective alternative to the increasingly complex methods for sentiment classification.

In addition, our methodology lowers the barrier to entry for organizations that want to mine their

growing text repositories but cannot afford the infrastructure and talent required by state-of-the-art

machine learning algorithms. Further, our study on the limits of Big Data can help managers make

informed decisions about how much data their firm needs in order to achieve accurate classification

results. Finally, our work lays the foundations for future research on the use of similar methods for

multi-label classification tasks in other domains.

2. Background and related Work

We begin this section with an overview of extant methods for sentiment classification. We then

discuss the motivation and theoretical background of our own approach.

2.1. Sentiment classification

Sentiment analysis (also known as opinion mining) is a broad field that covers multiple tasks

relevant to extracting opinions from different types of unstructured text, such as customer reviews,

articles, and blog posts. Arguably the most prevalent of these tasks is that of classifying a given

text segment as positive or negative,8,9 which is also the focus of our own work.
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The underlying theme of all previous relevant methods is their effort to simulate the way human

authors generate text to encode their sentiment. Lexicon-based approaches were the earliest suc-

cessful attempts in this direction. These methods predict the polarity of a text by counting the

number of known positive and negative words that it includes. At its core, this approach utilizes

two lexicons of positive and negative words, which the practitioner needs to provide as input.3,35,36

Several extensions were subsequently proposed, such as domain-specific37 and automatically con-

structed38 lexicons. Natural Language Processing (NLP) techniques can be used to capture linguis-

tic constructs that cannot be addressed by simple lexicons or extract semantic information that can

improve an algorithm’s prediction. For instance, previous work has combined lexicons with linguis-

tic constructs such as negation rules (e.g. “not good”), rules that enhance or change a word’s sen-

timent (e.g. “very good”), intra- and inter-sentence conjunctions, synonyms, and antonyms.10,11,39

Lexicon-based approaches are intuitive, easy to implement, and can also be competitive if properly

customized for the domain of application. However, they require considerable tuning and fail to

predict statements that do not include leads from the underlying lexicons, such as those that we

showed in the second and third columns of Table 1.

A second family of methods formulates sentiment classification as a standard supervised learning

problem. In this setting, the input to the method consists of a set of training instances with known

labels. Given the training data, a machine learning algorithm builds a predictive model that is then

used to classify new instances. One of the main benefits of this approach is that it allows us to

experiment with a wide range of established classification algorithms, such as Naive Bayes,40 Logis-

tic Regression,41 and Support Vector Machines.6,14 In the absence of sufficient manually annotated

data, the interested practitioner can use a semi-supervised algorithm to extend the training set

with automatically labeled instances.42

Even though supervised learning techniques can be very competitive in the context of polar-

ity prediction, their simplifying assumptions prevent them from accurately predicting challenging

instances that use context and complex linguistic constructs to express sentiment. Arguably the
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most influential assumption is that the order of the words in a document does not affect its overall

sentiment, which allows algorithms to treat the document as a bag of words. This assumption

greatly simplifies the process of building predictive models, but also sacrifices the valuable infor-

mation that comes with the order of the words, such as idioms with a clear positive or negative

sentiment. This information can be partially salvaged via the use of NLP techniques to improve

feature engineering. Specifically, rather than using single words as tokens, one could define complex

features such as n-grams (e.g. New York, buffalo chicken wings), or combinations of neighboring

words (e.g. a binary feature that encodes whether or not the words airport and noise appear in the

same sentence). Even though such features can indeed lead to performance improvements, feature

engineering is a complex task that involves manual tuning and the consideration of an arbitrarily

large number of candidate features.

The state-of-the-art from the domain of machine learning includes methods from the exciting

area of deep learning. These methods use advanced graphical models, such as different variants

of neural networks, to model various levels of abstractions over the input data. Artificial neural

networks are inspired by the neuron structure in the human brain, and their ultimate goal is to

model the brain’s decision making and processing functions.43 One of the benefits of deep learning

methods is the utilization of advanced word representations that go far beyond single words or even

simple linguistic features. Arguably the most characteristic example is the use of word embeddings:

continuous word representations based on the assumption that words in similar contexts have

similar meanings.31,44 Deep learning research has evaluated neural networks in the context of

various domains, including sentiment classification. For instance, convolutional neural networks

(CNNs) have been used for polarity prediction30 Such models introduce a single layer of convolution

over a set of word representations obtained via previously proposed unsupervised neural language

models.15,31 For the same task, good performance is obtained by a variant of the standard recursive

neural network (RNN), referred to as a recursive neural tensor network ,29 that allows for direct

interactions between the continuous representations (embeddings) of the words in the considered
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vocabulary. This facilitates the detection of meaningful linguistic constructs, such as negation.

Neural network have also been customized for sentiment classification by incorporating sentiment

scores into word embeddings.45 Additional graphical models for polarity prediction include gated

recurrent neural networks46 and adaptive recursive neural networks.47

Previous work has repeatedly verified the superiority of deep learning methods for sentiment

classification. However, their performance comes at the cost of significant complexity and decreased

interpretability.48 Neural networks are typically treated as “black boxes,” as the large number

of interacting non-linear parts make it difficult to understand exactly how they function and to

interpret their results.17 This can create resistance to adoption of these techniques in business

settings, especially in highly regulated industries with decision makers that lack the expertise

required to fully comprehend the inner workings of such complex models.49 This type of criticism

precedes the emergence of deep learning, as it dates back to the early days of artificial neural

networks.50–52

2.2. Our Approach: Memory Over Computation

The shortcomings and ever-increasing complexity of existing methods motivate us present a novel

and much simpler algorithm for sentiment classification. Consider a random English sentence S that

we need to classify as positive, negative or neutral. Our training corpus D consists of documents

(e.g. customer reviews) that have been manually annotated as positive or negative. Rather than

try to reverse engineer S, we opt to treat S as a single object and simply count the number of times

that it appears in a positive and in a negative document from C. If the difference in the two counts

is statistically significant, we mark S with the majority label. Otherwise, we mark it as “neutral”.

Admittedly, if the frequency NS,C of S in C is low, then our confidence in the prediction will also

be low. Our confidence rises as NS,C becomes larger, and we expect convergence to occur after

a certain point. For instance, NS,C = 1,000,000 likely does not lead to more accurate predictions

than NS,C = 100,000 or even NS,C = 10,000.

Our “memory over computation” approach is motivated by the usage-based paradigm for lan-

guage learning, which posits that children develop their language skills by initially memorizing and
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gradually refining simple patterns.53–55 For example, after memorizing the pattern “Where is the

X?,” the child can then customize it by substituting X for other terms or constructs that represent

meaningful objects such as “book” or “cookie jar.” In this setting, children learn how to properly

select which constructs to insert into each pattern based on frequency of usage. For instance, while

the child is likely to hear the phrase “Where is the cookie?” often, she is unlikely to hear the phrase

“Where is the eat?.” The first phrase will thus be validated via observation and repetition, while

the second one will be rejected. This mechanism allows the pruning of the endless patterns and

combination that can theoretically exist in a language.

The usage-based paradigm has strong ties to extensive theoretical work on formulaic sequences

and their effects on language learning.56,57 A formulaic sequence is a continuous or non-continuous

sequence of words that is stored and retrieved from memory at the time of use, and is not subject to

generation or analysis by the language grammar.58 Formulaic sequences offer processing efficiency

because single memorized units, even if made up of a sequence of words, are processed more quickly

and easily than the same sequences of words which are generated creatively.59,60 In other words, it

is easier to memorize prefabricated chunks of language that can be used on-demand, rather than

to build a new sequence by considering vocabulary and grammar rules.61–63

The success of our approach comes down to a simple question that we address in this work: do we

have enough data to confidently predict the polarity of any possible formulaic sequence? At a glance,

the response to this question is negative, as the number of possible sentences is simply overwhelming

and its would require an unrealistically large training corpus. However, as we demonstrate in our

study, we can drastically reduce this data dependency and achieve highly accurate predictions via

the use of flexible patterns that allow the replacement of words with wildcards. For instance, if the

frequency of the pattern “the * cannot be beat” in the input corpus is large enough to allow for a

confident prediction of its polarity, then we can memorize this pattern and use it to classify any

matching sentences (e.g. “the location cannot be beat,” “the food cannot be beat”).

This flexible representation is similar in spirit to that of the “schema theory” that was introduced

by Holland,64 and served as the basis of numerous follow-up works on genetic algorithms.65–67
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According to schema theory, one can cover a large part of a multidimensional space via a schema

that defines constraints on the defining dimensions. For instance, a general schema would restrict

one of the dimensions to a specific value while allowing the others to assume any value. While

this schema would cover a very large part of the search space, it is likely too general to represent

a meaningful pattern that applies to many valid points. Hence, by balancing the restrictiveness-

applicability tradeoff, we can discover interesting rules that accurately and succinctly represent

our data.66 As we discuss in detail in Section 3, our algorithm faces a similar tradeoff, as it utilizes

textual patterns that include both fixed terms and wildcards and can therefore match multiple

sentences. In the context of sentiment classification, the goal is then to mine patterns that can

match many sentences of the same (negative or positive) polarity and few or no sentences of the

opposite polarity.

3. The BigCounter Algorithm

In this section we present the BigCounter algorithm for sentiment classification. Our method

belongs to the broad class of supervised machine learning algorithms and operates in three steps:

preprocessing, training, and prediction.

3.1. Preprocessing

The input to the preprocessing phase is a large collection of weakly annotated documents, i.e.

documents that are annotated as positive or negative at the document level but not necessarily

at the sentence level. BigCounter begins by segmenting each document D into its sentences. For

each sentence S, the algorithm then computes PS: the set of all possible patterns generated if we

replace every possible subset of words in S with wildcards (* ) that represent any word. As we

discuss in the following section, the use of wildcards allows BigCounter to predict the sentiment

of sentences that have a very low or even zero frequency in the training corpus.

If D has a positive (negative) label, then we increment the positive (negative) count of every

pattern P ∈ PS by 1. We demonstrate this with an example in Figure 1. In this example, we

focus on the sentences “I would definitely return” and “I would never return,” mined during the
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preprocessing phase from a positive and negative review, respectively. The figure presents all the

possible flexible patterns that can be generated from these two sentences. The middle column

includes the patterns that the two sentences have in common. For each of these common patterns,

we increment their respective positive and negative counts by 1. For the patterns in the left and

right columns we increment only the positive and only the negative count, respectively.

We went to this place for dinner yesterday. I had 

the steak and a glass of wine. Everything was

amazing. I would definitely return !

It was our first time here. Horrible food and service. 

I would never return.

+ -+ -

+ -

1 positive, 0 negative 0 positive, 1 negative1 positive, 1 negative

Figure 1 Patterns generated from the sentences: “I would definitely return” and “I would never return”.

3.2. Training

The input to the training phase consists of a collection of distinct wildcard patterns, as well as a

positive and negative count for each pattern. The training phase uses the two counts to assign a

positive or negative label to the pattern.

We formally model the assignment as a two-sided coin toss, where the possible outcomes are

positive or negative. Given a pattern P , let pP denote the true probability of a positive outcome

and let N+
P , N−P be the pattern’s positive and negative counts, respectively. We want to decide

whether the two counts provide enough evidence to reject the neutrality hypothesis H0 : pP = 1
2
,

which states that P is equally likely to occur in positive and negative texts, and hence bears no

sentiment. The appropriate statistical test for this task is the binomial test, which examines whether

the deviations of the distribution of observations with two possible classes from the theoretically

expected distribution are statistically significant. We also account for the fact that positive reviews
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are known to be much more common than negative reviews68 by updating pP to reflect the class

proportions in the dataset. ∗

If our test rejects the neutrality hypothesis, then we assign the majority label to P and record it

in a simple key-value (pattern-label) store, which we refer to as the Polarity-Index. The algorithm

repeats this process for all the patterns extracted from all the documents in the training corpus.

We present the pseudocode for BigCounter’s preprocessing and training phases in Algorithm 1.

3.3. Prediction

Prediction with BigCounter is a straightforward task. Let S be a sentence whose sentiment we

want to determine. The prediction process begins by extracting the set of flexible patterns PS. The

algorithm then retrieves the polarities of the patterns from PS that are contained in the index I.

If the index includes multiple matching patterns, BigCounter simply labels S with the majority

label. If the numbers of positive and negative matching patterns are equal, or if no matching

patterns exist, then there is insufficient evidence that S bears sentiment, and it is labeled as neutral.

Essentially, BigCounter’s prediction phase is based on the same principle that ensemble methods

utilize: the predictions of multiple weak classifiers are aggregated to produce a final prediction.70,71

One can consider different aggregation policies by assigning weights to the predictors that

match a sentence. For example, matching flexible sequences with fewer wildcard characters may

be assigned higher weights. In our experiments on the algorithm’s predictive accuracy we use

unweighted majority voting, as we found alternative policies to be less competitive.

3.4. Discussion

One of the main benefit of BigCounter is that it can deliver accurate sentence-level predictions even

when trained on instances with document-level annotations. The large volume of product reviews

on online marketplaces is an inexpensive source of such data. In contrast, other state-of-the-art

approaches, such as recursive neural networks, often require sentence-level or even phrase-level

annotations.29

∗ For large values of N+
P +N−P we can use the faster χ2 test to closely approximate the binomial test.69
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Algorithm 1 BigCounter Training.

Input: Corpus of training docs D, confidence level α

1: U = ∅ . Set of unique wildcard patterns

2: pos= {}, neg= {} . Key-value stores for the pos and neg counts of each pattern

3: for each doc D ∈D do

4: for each sentence S of D do

5: Generate the set of wildcard patterns PS from S.

6: for each pattern P ∈PS do

7: Add P to U

8: if D is positive then pos[P ]+ = 1 . pos[P ], neg[P ] are initialized to 0

9: else neg[P ]+ = 1

10:

11: Polarity-Index={} . An empty key-value store

12: Set p equal to the percentage of positive docs in D

13: for each pattern in U do

14: if BinomialTest(pos[P ], neg[P ], p)<α then

15: if pos[P ]>neg[P ] then Polarity-Index[P ] = +

16: else Polarity-Index[P ] =−

17: Return Polarity-Index

On the other hand, BigCounter naively assumes that all the patterns mined from an overall

positive (negative) document also carry positive (negative) sentiment. While positive reviews will

generally include positive patterns, there are some cases where this assumption is violated. For

instance, only part of the text in a customer review actually carries sentiment while the rest

covers objective information, positive sentences are used sarcastically in negative reviews, or an

otherwise positive review includes a single negative comment. Such inevitable occurrences are likely

to contaminate the positive and negative counts of each pattern. Despite such contaminations,
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given a very large dataset of reviews with many occurrences of a truly positive pattern, the pattern

will appear in more positive than negative reviews (the opposite is the case for negative patterns).

Finally, the difference between the positive and negative counts of neutral patterns will not be

statistically significant (as determined by the binomial test) and thus, the pattern will not be added

to the Polarity-Index.

4. Scalability Enhancements

In this section we describe three techniques that enable us to efficiently apply our method on very

large datasets.

4.1. Efficiently performing many statistical tests

The BigCounter algorithm performs a large number of statistical tests during training. By exploit-

ing a simple structural property of the binomial test we can significantly speed up this phase.

Consider a pattern P with N+
P +N−P = n. The binomial test will label P as positive if N+

P is suffi-

ciently large. Intuitively, there should exist some number x such that we can reject the neutrality

hypothesis and label the sequence as positive if and only if N+
P >x.

We prove that such a number exists and that we can efficiently compute it†. Let α denote

the confidence level which we are using in our statistical tests and let p =
N+

P
n

. The bound x =

x(N+
P , n,α) the solution to the following problem:

min
x

x

s.t.
n∑

k=x

(
n
k

)
pk(1− p)n−k ≤ α

x∈ {0,1, . . . , n}.

(P1)

The optimization problem (P1) is non-linear and discrete. However, observe that as the value of

x decreases, the left-hand side of the inequality constraint strictly increases since more positive

terms are included in the summation. Therefore, the optimal solution can be obtained following

a greedy procedure: search through the solution space starting at x= n and decrease the value of

† The bound for labeling the pattern as negative can be computed in the exact same way.
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x until a non-feasible solution x∗ is reached, at which point set x= x∗+ 1. In the case that P1 is

infeasible, the proposed procedure outputs x= n+ 1, i.e a bound that never rejects the neutrality

hypothesis.

For a given class probability p and confidence level α, we are now able to pre-compute these

bounds for different values of n, and store them in a simple key-value store, such a dictionary

or hash map. This substitutes statistical tests (which in the case of the binomial test involve

computationally cumbersome factorials) with fast memory lookups, thus dramatically speeding up

the training phase. Further, it is straightforward to apply our analysis to obtain similar bounds for

the χ2 test, which can be used instead if the number of observations n is sufficiently large.

4.2. Stopword Homogenization

The notion of stopwords is used in linguistics to refer to the most commonly used words in a

language. For the English language, the list of stopwords include words such as “a,” “the,” “this,”

“be,” and “and,” which account for close to 40% of the words of all written text.72

We utilize stopwords to reduce the memory requirements of the BigCounter algorithm. During

preprocessing, every stopword is replaced by the special token š. We refer to this step as stop-

word homogenization. The homogenization step has significant computational impact, as it greatly

reduces the number of generated patterns. For example, the sentences “The price cannot be beat”

and “This price cannot be beat” would both be homogenized to “š price cannot š beat′′ and would

thus generate the exact same set of patterns. Stopword homogenization has a significant compu-

tational impact, as it reduces the memory footprint of BigCounter by about 75%.

4.3. Parallelizability

Building the Polarity-Indexcan be a computationally strenuous task, especially if we want to

scale up to real-life Big Data applications. Next, we demonstrate that the index-building process is

highly parallelizable and can be completed via parallel threads on any distributed infrastructure.

Consider a pattern S of length n. The first observation is that only sequences of the same length

as S may contribute in computing the positive and negative counters N+
P , N

−
P for the pattern.
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Therefore, we can build the index for each distinct length independently and in parallel. The second

observation is that two sentences of the same length can generate the same pattern only if they

include stopwords in the exact same positions. For example, the sentence S =“Great price for the

quality” has stopwords in the third (for) and fourth (the) positions. Therefore, the set of patterns

PS that it generates will have the stopword token š in these positions. It follows that a sentence

with a different allocation of stopwords cannot generate any of the patterns in PS. We conclude

that sequences with different stopword allocations are independent with respect to the statistical

tests that BigCounter conducts during its training phase. Based on these two observations, our

implementation of BigCounter assigns a separate thread for each batch of sentences that share the

same length and the same stopword structure, efficiently parallelizing the training phase.

5. Evaluation

In this section we present the experiments that we conducted toward the evaluation of the

BigCounter algorithm. We begin with a brief overview of our datasets. We then evaluate the

predictive accuracy of BigCounter by conducting extensive tests that include comparisons with

the state-of-the-art. We conclude our evaluation with a study on the limits of Big Data for senti-

ment classification. All the datasets and software implementations used in this section are openly

accessible or can be made immediately available upon request.

5.1. Datasets and Setup

Raw Data: We utilize three datasets of reviews from the TripAdvisor, Yelp, and Amazon websites,

which we crawled over the period between September 2015 and December 2015. TripAdvisor reviews

pertain to the hotel industry, Yelp reviews to the restaurant industry, and Amazon reviews are

Table 2 Basic Dataset Statistics - Ratings Distribution

Dataset Pos Neg Neutral Total

Hotels 4,048,966 619,954 727,662 5,396,582

Restaurants 2,873,114 236,121 537,497 3,646,732

Books 1,166,161 185,000 134,705 1,485,866
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focused on books. The challenge in the book domain stems from its highly subjective nature, as well

as the richness of the language used in book reviews. The main benefit in utilizing three different

datasets is that we can assess the generalizability of our results, across both websites and review

domains. Our datasets include the text and a rating from 1 to 5 stars for each review. We assume

that reviews with 4 or more stars are positive and reviews with 2 or less stars are negative.

Table 2 provides an overview of our datasets. Positive reviews are by far the most frequent

category in all three datasets, confirming the existence of a strong positive bias.68 We also report

the distribution of sentence length (measured in number of words) for all three datasets in Figure 2.

We observe a similar distribution across datasets, with a clear peak at approximately 10 words.

As the sentence length increases, our data becomes sparser. Given that BigCounter relies on the

availability of a large training corpus to deliver accurate predictions, we will refer to these plots to

help us interpret any variation in our results.
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Figure 2 Distribution of sentence length (measured in number of words) for the three datasets.

Ground Truth Data: We construct 6 ground-truth datasets with sentence-level sentiment anno-

tations as follows: First, for each of the three review domains, we sample 100 sentences uniformly

at random for reviews belonging to each star rating category (1 to 5 stars). This ensures that the

test sets are sufficiently large (500 sentences) and balanced with respect to ratings. We then ask

10 human annotators hired via Amazon’s Mechanical Turk platform to manually annotate each

sampled sentence as positive, negative, or neutral. If the majority label does not have the support



:
19

of at least 7 of the 10 annotators, then the sentence is discarded. ‡ This first sampling phase leads

to a corpus 3 datasets (1 per domain) with 500 annotated sentences per dataset. We refer to the

first corpus as SentenceCorpus.

We then repeat the process for all 3 domains domain, but this time restrict the sampling process

to sentences that do not include known positive or negative words (e.g. great, amazing, horrible).

The identity of such words is verified via their presence in the established lexicons introduced in.35 §

The elimination of sentences with obvious sentiment cues leads to a much more challenging test

set, wherein the authors use more complex linguistic patterns to express sentiment. This second

sampling phase leads to 3 additional datasets (1 per domain) with 500 annotated sentences per

dataset. We refer to this second corpus as SentenceCorpus-Hard. In total, our evaluation includes

(3× 500) + (3× 500) = 3000 annotated sentences.

5.2. Sentiment Classification

In this experiment, we assess the ability of BigCounter to predict the sentiment of sentences, and

compare it with other state-of-the-art techniques. We compare our algorithm against two com-

petitive baselines: support vector machines (SVMs) and recursive neural tensor networks (RNNs).

SVM-type algorithms are based on an intuitive idea: given the representation of the training set

examples in the feature space, the goal is to find the hyperplane that maximizes a distance measure

between the different classes. SVMs have met success across a wide range of real life applications,

including sentiment classification.73–75 We use the multi-class SVM implementation of Scikit-learn,

which we tune by performing an extensive grid search over the hyperparameter space.¶

The second baseline belongs to the class of deep learning algorithms. More specifically, we employ

the Stanford CoreNLP sentiment analysis implementation.29 The algorithm is a sentence-level

model, which begins by utilizing a pipeline of NLP techniques that include lexical and syntactical

‡Due to the apparent triviality of the annotation task for human annotators only a handful of sentences were actually

discarded

§ http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar

¶ See also goo.gl/bZgCeg, last accessed on September 1st, 2016.
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sentence parsing, tagging, and construct identification, to construct a tree representation of the

sentence structure. In this implementation, the parse trees are constructed from a publicly available

movie review dataset,76 all unique phrases are extracted from the trees and require manual anno-

tation. A recursive neural tensor network (RNN) is then trained on top of the extracted linguistic

structure and annotations.

All three algorithms are evaluated on the SentenceCorpus and SentenceCorpus-Hard corpora,

which include sentences with three different labels (positive, negative, neutral). We present the

results of our experiments on the SentenceCorpus and SentenceCorpus-Hard corpora in Figures

3 and 4, respectively. The y-axis represents the achieved accuracy, while each bar on the x-axis

represents a different sentence length (i.e. number of words). We report the results for each length

separately in order to study the consistency of the three algorithms.
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Figure 3 Predictive accuracy as a function of sentence length, evaluated on the SentenceCorpus corpus.
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Figure 4 Predictive accuracy as a function of sentence length, evaluated on the SentenceCorpus-Hard corpus.
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For the SentenceCorpus corpus, BigCounter consistently outperforms both baselines for most

sentence lengths in the hotels and restaurants domains. For all three domains, BigCounter is

very competitive and often the winner for sentences that include up to 8-10 words. The RNN

demonstrates a slight advantage for longer sentences, although this advantage is not consistent and

the top approach tends to vary across datasets and sentence lengths. We anticipated a decrease in

BigCounter’s accuracy for longer sentences, as the algorithm depends on the size of the training

set, which becomes increasingly smaller for longer sentences. This is also supported by Figure 2,

which verifies that the availability of sentences steadily decreases after their length surpasses 8-10

words. We examine and quantify the effect of data availability in the following section, where we

discuss our study on the limits of Big Data for sentiment classification.

Even though, as anticipated, the accuracy of all three algorithms is lower for the

SentenceCorpus-Hard, our algorithm performs at a high level and often surpasses the two base-

lines by a wide margin. This verifies that BigCounter does not require obvious sentiment cues

to deliver accurate predictions, as it utilizes its own Polarity-Index: an extensive and diverse

library of both obvious and non-obvious sentiment-bearing patterns. On the other hard, both the

SVM and RNN baselines perform significantly worse for this dataset, across domains and sentence

lengths. Table 3 reports the accuracies of the three classifiers.

Table 3 Summary of the classification accuracies.

Domain Type BigCounter RNN SVM

Hotel Easy 0.743 0.654 0.504

Hotel Hard 0.620 0.443 0.409

Restaurants Easy 0.759 0.656 0.658

Restaurants Hard 0.577 0.444 0.436

Books Easy 0.683 0.736 0.587

Books Hard 0.671 0.467 0.409
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5.3. Testing the Limits of Big Data for Sentiment Classification

In this section, we attempt to contribute to the body of research that examines performance

gains from bigger data by focusing on how the size of the training corps affects the of predictive

performance of BigCounter. Our approach builds on previous work that has utilized data from

different domains to conduct a learning curve analysis and gauge the benefits of larger training

corpora for predictive tasks.33,34 In our own evaluation, we examine the effect of increasing the size

of the training set on:

1. The training set’s linguistic diversity, as encoded by the the number of unique wildcard pat-

terns, as well as by the number of patterns that are accepted into BigCounter’s Polarity-Index.

2. The predictive performance of BigCounter.

We generally expect that adding more data should increase the number of unique and indexed

patterns. However, we hypothesize that as the training set gets larger, it becomes harder to locate

never-before-seen patterns, and even harder to locate new sentiment-bearing patterns that make it

into the Polarity-Index. This would lead to a convergence in terms of accuracy, as the algorithm

would not have additional ways to classify new sentences. The purpose of this experiment is to verify

the existence of such a convergence point. We begin by randomly sampling 50000 sentences to serve

as the initial training set. We then iteratively double the size of the training set by adding a new

random sample of sentences. After each addition, we re-compute the number of unique patterns,

the size of the Polarity-Index, and the accuracy of BigCounter on both the SentenceCorpus

and SentenceCorpus-Hard corpora.

Linguistic Diversity: We report the results of the first two Figure 5. We observe that, for all

three domains, additional data have a major effect on both the number of generated patterns

and the size of the index early in the process. This effect dwindles for larger training sets, as

large amounts of additional data are required for only small increases in the number of generated

patterns. This verifies that the majority of distinct language patterns are already present in smaller

datasets. In addition, the index size exhibits the same diminishing returns behavior, with most of



:
23

0 5M 10M 15M 20M 25M 30M 35M

Training Set Size (sequences)

101

102

103

104

105

106

107

108

109

1010

1011
N

u
m

. 
o
f 
S

e
q
u
e
n
c
e
s

Index Generated

(a) Hotels

0 5M 10M 15M 20M

Training Set Size (sequences)

101

102

103

104

105

106

107

108

109

1010

1011

N
u
m

. 
o
f 
S

e
q
u
e
n
c
e
s

Index Generated

(b) Restaurants

0 5M 10M 15M

Training Set Size (sequences)

101

102

103

104

105

106

107

108

109

1010

1011

N
u
m

. 
o
f 
S

e
q
u
e
n
c
e
s

Index Generated

(c) Books

Figure 5 Number of unique patterns and the size of the Polarity-Index as a function of the training set size.

the sentiment-bearing patterns having been detected early in the process. This provides us with

strong evidence that, with respect to discovering new sentiment-bearing patterns, there exists a

threshold above which additional data quickly becomes less valuable.

A second observation is that, for all three domains, there exists a considerable difference (3

orders of magnitude) between the size of the Polarity-Index and the number of unique patterns

mined from the training set. The same holds for the rate at which these two quantities grow.

We conclude that even though there is a great number of patterns in the reviews, the number of

sentiment-bearing patterns is a lot smaller and converges a lot faster. This finding implies that the

practice of additional acquiring additional data does not deliver additional gains after a certain

point in terms of linguistic diversity.

Accuracy: We report the results of the first two Figure 6. We first observe that, as expected, the

effect of additional data is most pronounced during the first steps of the learning curve analysis:

relatively small increases in the training set size result in large performance gains. Increases in

predictive performance persist throughout the learning curve analysis, but soon start to diminish

to the point that they become marginal. The fact that this is the case for a highly non-linear and

well-performing algorithm such as BigCounter reveals that, after some point, additional data has

little value, at least with respect to sentiment classification. It is worth noting the overlap of the

two curves for the books domain; this is expected due to the fact that reviews from this domain

contain less obvious leads, and hence they are more challenging to classify.
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Figure 6 Accuracy as a function of the training set size, evaluated on the SentenceCorpus and

SentenceCorpus-Hard corpora.

6. Implications and Directions for Future Work

Our methodology for sentiment classification departs from the standard approach of trying to

mathematically explain natural language. Instead, we demonstrate how the ever-increasing com-

plexity of state-of-the-art methods can be replaced by mining weakly annotated big data. Our

experimental evaluation against competitive baselines verifies the efficacy of this new and much

simpler approach. In addition, we utilize our methodology toward a detailed study on the limits

of big data for sentiment classification. Our study is motivated by the hypothesis that, after a

certain point, adding more data to the training set does not increase performance. Our findings

provide strong evidence in support of this hypothesis, and deliver valuable insight on the connection

between data size and performance.

Implications: Our work has implications for practitioners in both academia and industry, as it

presents an intuitive alternative to the increasingly complex and computationally expensive algo-

rithms for sentiment classification. In addition to being much simpler while achieving highly com-

petitive results, our approach delivers interpretable predictions that can be easily communicated

to managers and decision makers, even if they do not possess an extensive technical background.

This is a significant advantage over state-of-the-art algorithms, such as recent advancements in

deep learning, that are typically treated as black boxes and mystify non-experts.

Further, our methodology lowers the barrier to entry for firms that want to incorporate sentiment

classification into their product or data analysis tasks. This is especially important for firms that
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cannot afford the hardware/software infrastructure and talent that is required to train and tune

complex computational models. Lowering a firm’s dependency on technical talent can be a signifi-

cant advantage, especially for smaller firms that do not have the resources to be competitive in the

ongoing talent wars. Such firms can greatly benefit by our data-over-computation paradigm and

utilize data that they already have (or can easily acquire) rather than try to design and implement

an algorithmic engine that surpasses their capabilities.

Finally, our study on the limits of Big Data can help managers make informed decisions about

how much data their firm needs in order to achieve accurate sentiment-classification results. The

ability to make such decisions is valuable, as additional data typically comes with additional acqui-

sition and management costs, measured in both monetary terms and work hours. Therefore, a

firm can achieve significant savings by not trying to crunch more data than it actually needs to.

Our study can help managers and team leads strategically design their data acquisition efforts by

revealing the type of data that they need to acquire (e.g. in terms of the origin domain, vocabulary,

polarity) in order to complement their training set, cover previously uncovered cases, and achieve

more accurate results.

Directions for future work: Future research can consider applying our approach to different

domains. Even though the focus of our work is on sentiment classification, our methodology can also

be applied to any document classification task, as well as to the task of labeling specific sentences

within a larger document. For instance, consider the problem of assigning topic labels to tweets.

Rather than depending on elusive training datasets with tweet-level annotations, a practitioner

could utilize our approach on weakly annotated data, such as batches of tweets from users with

known topical interests (e.g. we expect politicians to tweet about politics and athletes to tweet

about sports).

It is our hope that our findings and methodological contributions will inspire and support relevant

research in this domain and will motivate the design of simple but effective algorithms that can

mine actionable insights from big data.
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